If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25a^2+15a=0
a = 25; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·25·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*25}=\frac{-30}{50} =-3/5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*25}=\frac{0}{50} =0 $
| C=2.95m | | 14=n/3 | | 51/3=32/3+h | | -7f-2f=20 | | x-(x*0.075)=6663.99 | | 5=38-i | | 11c^2-5c=0 | | x+2x+3x+5X=360 | | 4/9x-2+5/6x=2x-1/3 | | 3(x-5)+1=8 | | 9=r/2 | | 1x+2x-22=24.5 | | 1/4a+1/3a+8=22 | | 2(8p+2)-3(2-7p)-2(4=2p)= | | (5x-16)*3-4*3=216000 | | 5n–8=11n+5 | | 42=18+2x-14x | | (-4x-6)=2x+2 | | -(x+7)-5=5(x+3)-6x | | 5x-7x+5x=4-9 | | 5x-16*3=48 | | 12n-19=4(2n+5 | | 5x-7x+5x+4-9=0 | | |x-9|=23 | | 4x+x/6=24 | | 0n+20=4n-20 | | 43.8y=294 | | 10n+20=4n-20 | | 43.8/14=21/y | | 20n+20=4n-20 | | 7/10=a-5/7 | | -5/2c+13=3c/4 |